Bacterial bioaugmentation for improving methane and hydrogen production from microalgae

نویسندگان

  • Fan Lü
  • Jiaqi Ji
  • Liming Shao
  • Pinjing He
چکیده

BACKGROUND The recalcitrant cell walls of microalgae may limit their digestibility for bioenergy production. Considering that cellulose contributes to the cell wall recalcitrance of the microalgae Chlorella vulgaris, this study investigated bioaugmentation with a cellulolytic and hydrogenogenic bacterium, Clostridium thermocellum, at different inoculum ratios as a possible method to improve CH4 and H2 production of microalgae. RESULTS Methane production was found to increase by 17?~?24% with the addition of C. thermocellum, as a result of enhanced cell disruption and excess hydrogen production. Furthermore, addition of C. thermocellum enhanced the bacterial diversity and quantities, leading to higher fermentation efficiency. A two-step process of addition of C. thermocellum first and methanogenic sludge subsequently could recover both hydrogen and methane, with a 9.4% increase in bioenergy yield, when compared with the one-step process of simultaneous addition of C. thermocellum and methanogenic sludge. The fluorescence peaks of excitation-emission matrix spectra associated with chlorophyll can serve as biomarkers for algal cell degradation. CONCLUSIONS Bioaugmentation with C. thermocellum improved the degradation of C. vulgaris biomass, producing higher levels of methane and hydrogen. The two-step process, with methanogenic inoculum added after the hydrogen production reached saturation, was found to be an energy-efficiency method for hydrogen and methane production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii

Background Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methan...

متن کامل

Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process

BACKGROUND The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utiliza...

متن کامل

Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.

The potential for improving long-chain fatty acids (LCFA) conversion to methane was evaluated by bioaugmenting a non-acclimated anaerobic granular sludge with Syntrophomonas zehnderi. Batch bioaugmentation assays were performed with and without the solid microcarrier sepiolite, using 1 mM oleate as sole carbon and energy source. When S. zehnderi was added to the anaerobic sludge methane product...

متن کامل

Analyzing and Comparing Energy and Exergy of POXR and SMR Reactors for Producing Hydrogen from Methane Gas

The POXR and SMR methods adopted in producing hydrogen from methane gas are simulated and exergy analysis of both the processes are run for comparison. The effective parameters of the feeding materials ratio and the system temperature for maximizing hydrogen production and increasing efficiency are assessed here. Influenced by the changes in these parameters the unit efficiency is increased up ...

متن کامل

Bioaugmentation of Anaerobic Sludge with Syntrophomonas zehnderi as a Prospect for Enhanced Methane Production from Oleate

Bioaugmentation of anaerobic sludge with long-chain fatty acids (LCFA)-degrading bacteria can be a feasible strategy to enhance methane production from LCFA. This hypothesis was studied in batch assays with Syntrophomonas zehnderi as bioaugmenting strain. This bacterium is able to degrade a wide range of saturated and unsaturated LCFA, and its presence has been reported in several oleate-fed bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013